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MeV Neutrinos — What are They Good For?

Solar Supernova
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Is it a lack of interesting questions?
No

Is it a lack of big detectors?
Sort of

Is if fixable?

Yes
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Plan of the Talk

v/ Introductory exhortation
Revolutionizing MeV neutrino astronomy
Spallation: the haunting
Spallation: the summoning
Spallation: the vengeance

Back to the future with neutrino physics
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Revolutionizing MeV neutrino astronomy
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Basic Features of MeV Neutrino Detection

Detectors must be massive:
Effectiveness depends on volume, not area

Example signals:

Detectors must be quiet:
Need low natural and induced radioactivities

Example backgrounds:

A(Z,N) 5 AZ+1,N—1)+e + 0.
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First: Get Multi-kton-Scale Neutrino Detectors

Cryogenics - cold box, buffer storage

Cryostat septum

LAr filtration system

Detector Module
2 high x 3 wide x 18 long drift cells x 2 modules )
216 APAs, 224 CPAs

32 kton water 20 kton oil 34 kton liquid argon
Japan China United States
running building proposing

Excellent performance or prospects for neutrino astronomy
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Second: Enable Super-K Selection of Nuebar

The signal reaction produces a neutron, but most backgrounds do not

Beacom and Vagins (2004): First proposal to use dissolved gadolinium in
large light water detectors showing it could be practical and effective

Neutron capture on protons
Gamma-ray energy 2.2 MeV

'S Hard to detect in SK
~
5K+Gd Neutron capture on gadolinium
Gamma-ray energy ~ 8 MeV

Easily detectable coincidence
separated by ~4 cm and ~ 20 us
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Mad Scientist at Work in Underground Lair

Adding 383 grams Gd,(SO,), to 191 liters of H,O; January 5%, 2011
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Water and Gadolinium Filtration System

Fast Recirculation Loop
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Fate of the GADZOOKS! Proposal

For about 10 years:
Vagins and colleagues developed experimental aspects
Beacom and colleagues developed theoretical aspects

Super-K 2015: Yes

141] Ref. [4] proposed adding a 0.2% gadolinium solution into
the SK water. After exhaustive studies, on June 27,
2015, the SK Collaboration formally approved the con-
cept, officially initiating the SuperK-Gd project, which
will enhance anti-neutrino detectability (along with other
physics capabilities) by dissolving 0.2% gadolinium sul-
fate by mass in the SK water.

Will greatly increase sensitivity for many studies
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Third: Remove Detector Backgrounds

After strong cuts, still large detector backgrounds in Super-K

Signal is
neutrino-
electron
scattering

Background
is beta decays

1 | I 1 I 1 | I
-0.5 0.0

What causes the backgrounds and can we remove them?
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Muon-Induced Spallation Decay Backgrounds

unstable isotope

then later...

unstable isotope electron

‘ Iy O —

Muon passes through detector
Beta decays follow; veto in cylinder

Muon rate 2 Hz; betas to~30 s
Cuts face inefficiency or deadtime
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Examples of Spallation Backgrounds

B solar neutrino pep, CNO solar neutrino
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Spallation: the haunting

Li and Beacom 2014 [arXiv:1402.4687]
Isotopes are made by muon secondaries and are calculable
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Muons and their Energy Losses
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Typical muon energy is 250 GeV; typical energy loss is 8 GeV
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Secondary Particles and their Properties
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Secondaries are abundant, low-energy, and near the track
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Spallation Yields and their Parents
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Spallation yields vary greatly, depend on MeV reactions
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Spallation Decays and their Properties
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Time and energy distributions agree with Super-K data
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Spallation: the summoning

Li and Beacom 2015a [arXiv:1503.04823]
Isotopes are made in showers and are calculable
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Showers in Concept and Practice
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Secondary Path Length Spectra from Showers
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Path length spectra from showers are near universal
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Muon-Induced Showers and their Properties
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Muons make showers of different types, broad spectrum
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Light and Isotope Production by Showers
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EM showers make light but not isotopes; hadronic is opposite
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Correlations of Showers and Isotopes
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Isotope production follows muon energy loss
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Spallation: the vengeance

Li and Beacom 2015b [arXiv:1508.05389]
Isotope production can be identified and localized
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inner detector walls

Can we reconstruct the shower?
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Where is the Shower?
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Left shows Monte Carlo truth; right shows Super-K reality
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Reconstruction Using all PMT Hits

— Improvements 1+2
— Improvements 1+2+3
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We can rebuild it
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Bespoke Cuts for Every Muon

Likelihood

Distance along muon track [m]

Harder cuts, smaller volume: better efficiency, less deadtime
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Eliminating Spallation Backgrounds

First cut:
Rare but dangerous SN 5-20 MeV
high-energy showers ) '

Second cut:
Restrict cuts to near
shower positions

Third cut (in devel.):
Rare but dangerous
hadronic showers

Super-K is already adopting our techniques; more to come
Expect to reduce backgrounds in all MeV detectors by ~ 10
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Back to the future with neutrino physics
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MeV Neutrinos — What are They Good For?

Solar Supernova
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Examples of Spallation Backgrounds

B solar neutrino pep, CNO solar neutrino
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Take-Away Messages

Important physics depends on detecting MeV neutrinos

With better detectors, signal ID, and backgrounds, we can

Understanding spallation backgrounds is a new opportunity
Theoretical insights are crucial to progress

Backgrounds are made by secondaries

Secondaries are made in showers

Showers can be identified and localized

Applicability to a wide range of underground detectors

Shirley Li is applying for postdocs this fall:
Works on neutrino physics and detection, also neutron stars
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Center for Cosmology and AstroParticle Physics

The Ohio State University’s Center for Cosmology and AstroParticle Physics
o N o K{\ ‘ v
= APP . N>

Columbus, Ohio: 1 million people (city), 2 million people (city+metro)
Ohio State University: 56,000 students

Physics: 55 faculty, Astronomy: 20 faculty

CCAPP: 20 faculty, 10 postdocs from both departments

Placements: In 2014 alone, 12 CCAPP alumni got permanent-track jobs

ccapp.osu.edu

Recent faculty hires: Antonio Boveia, Linda Carpenter, Chris Hirata,
Adam Leroy, Laura Lopez, Annika Peter
Recent PD hires: Ami Choi, Alexia Lewis, Niall MacCran, Tuguldur
Sukhbold, Michael Troxel, Ying Zu, ... and Francesco Capozzi

CCAPP Postdoctoral Fellowship applications welcomed this Fall
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